Peer-Reviewed Journal Details
Mandatory Fields
K. Bagga and R. McCann and M. Wang and A. Stalcup and M. Vázquez and D. Brabazon
2015
January
Laser assisted synthesis of carbon nanoparticles with controlled viscosities for printing applications
Published
()
Optional Fields
447
263
268
Abstract High-quality carbon nanoparticles with controlled viscosity and high aqueous stability were prepared by liquid-phase laser ablation of a graphite target in deionized water. The size distribution was found to vary from 5 nm to 50 nm with mean size of 18 nm, in the absence of any reducing chemical reagents. Efficient generation of short chain polyynes was recorded for high laser repetition rates. Homogeneous and stable nanoparticle suspensions with viscosities ranging from 0.89 to 12 mPa.s were obtained by suspending the nanoparticles in different solvent mixtures such as glycerol–water and isopropanol–water. Optical properties were investigated by absorption and photoluminescence spectroscopy. Raman spectroscopy confirmed graphitic-like structure of nanoparticles and the surface chemistry was revealed by Fourier-transform infrared spectroscopy demonstrating sufficient electrostatic stabilization to avoid particle coagulation or flocculation. This paper present an exciting alternative method to engineer carbon nanoparticles and their potential use as a ligand-free nano-ink for ink jet printing (jetting) applications.
http://www.sciencedirect.com/science/article/pii/S002197971400811X
http://dx.doi.org/10.1016/j.jcis.2014.10.046
Grant Details