Peer-Reviewed Journal Details
Mandatory Fields
Mallon, CT;De Chaumont, C;Moran, N;Keyes, TE;Forster, RJ
2010
January
Langmuir
Electrochemical Desorption of Fibrinogen from Gold
Published
8 ()
Optional Fields
ATOMIC-FORCE MICROSCOPY BOVINE SERUM-ALBUMIN PROTEIN ADSORPTION CONFORMATIONAL-CHANGES SOLID-SURFACES KINETICS BEHAVIOR REVERSIBILITY ELUTABILITY MONOLAYERS
26
293
298
The electrochemically induced desorption of Oregon green labeled fibrinogen layers from clean gold surfaces at negative potentials has been probed using capacitance, fluorescence microscopy, and atomic force microscopy. Capacitance measurements on Fibrinogen layers indicate that desorption occurs at potentials more negative than -0.8 V and that complete desorption Occurs when the electrode is biased at -1.2 V. Significantly, the fluorescence intensity initially increases as the dye labeled protein is electrochemically desorbed due to it decrease in quenching by the gold surface, Following this initial increase, the protein diffuses into solution and the fluorescence intensity decreases over time. More than 90% of the dye labeled Fibrinogen is desorbed and diffuses out of the confocal volume in less than 2000 s when the potential is stepped to -1.2 V. A FM before and after application of the desorbing potential confirms removal of the protein. Collection of the desorbed protein in Solution reveals it Surface coverage of (4.0 +/- 2.3) x 10(-13) mol cm(-2) or an area of occupation of 400 +/- 140 nm(2) per molecule, which indicates that the protein is not extensively spread on the bare gold Surface. Significantly, SDS-PAGE analysis indicates that the adsorption-desorption cycle dramatically effects the protein structure, with the electrochemically desorbed Fibrinogen showing extensive fragmentation compared to native protein.
WASHINGTON
0743-7463
10.1021/la902115e
Grant Details